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ABSTRACT

This paper presents a modular framework for meta-heuristic opti-
mization of complex optimization tasks by decomposing them into
subtasks that may be designed and developed separately. Since
these subtasks are generally correlated, a separate optimization is
prohibited and the framework has to be capable of optimizing the
subtasks concurrently. For this purpose, a distinction of genetic
representation (genotype) and representation of a solution of the
optimization problem (phenotype) is imposed. A compositional
genotype and appropriate operators enable the separate develop-
ment and testing of the optimization of subtasks by a strict decou-
pling. The proposed concept is implemented as open source refer-
ence OPT4J [6]. The architecture of this implementation is outlined
and design decisions are discussed that enable a maximal decou-
pling and flexibility. A case study of a complex real-world opti-
mization problem from the automotive domain is introduced. This
case study requires the concurrent optimization of several heteroge-
neous aspects. Exemplary, it is shown how the proposed framework
allows to efficiently optimize this complex problem by decompos-
ing it into subtasks that are optimized concurrently.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Probabilistic algorithms (includ-
ing Monte Carlo); 1.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search—Heuristic methods

General Terms
Design

Keywords

Optimization, Modular, Framework

1. INTRODUCTION

The domain of meta-heuristic optimization comprises methods
such as Evolutionary Algorithms (EAs) [8], Simulated Annealing
(SA) [11], Particle Swarm Optimization (PSO) [20], and Differen-
tial Evolution (DE) [27]. These methods are successfully applied to
complex real-world problems from different domains where exact
optimization techniques like Linear Programming (LP), Quadratic
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Programming (QP), or Geometric Programming (GP) are not ap-
plicable due to their restrictive expressiveness. The targeted prob-
lems of meta-heuristic optimization might comprise multiple non-
linear objectives or constraints. In contrast to common optimiza-
tion benchmarks, the complexity of realistic problems might be
also characterized by the problem structure where multiple hetero-
geneous subtasks have to be optimized concurrently. For instance,
such a complex optimization task might be the optimization of au-
tomotive networks that requires the concurrent determination of the
allocation of hardware resources, the binding of software tasks, the
routing of messages, and the scheduling.

Numerous frameworks and libraries for meta-heuristic optimiza-
tion have been provided that allow a separate development of op-
timization algorithms and optimization tasks. However, current
frameworks do not support heterogeneous optimization tasks that
require a concurrent optimization of correlated subtasks innately.
Thus, the design and development of these complex optimization
tasks is hampered. To close this gap, this paper presents a frame-
work that is tailored to meta-heuristic optimization of complex op-
timization tasks by enabling the decomposition into subtasks. Since
the subtasks cannot be optimized separately due to their correlation,
the framework is capable of optimizing subtasks concurrently. As
a proof of concept, a real-world automotive network optimization
problem is introduced and implemented using the proposed frame-
work.

Contributions of the Paper. This paper presents a modular frame-
work for meta-heuristic optimization. It provides an efficient de-
sign and development approach for complex optimization tasks by
decomposing these into correlated subtasks that are optimized con-
currently. For this purpose, a strict distinction between the geno-
type and phenotype is imposed that separates genetic representation
and solution representation of an optimization task. The optimiza-
tion tasks are decomposed into subtasks that might be designed and
developed separately. In order to enable this modular design of op-
timization tasks, compositional genotypes and appropriate opera-
tors are proposed.

A reference implementation of the proposed concept is presented.
This implementation is written in Java and made publicly available,
see OPT4J [6]. In order to support the modular development, the
framework makes use of the dependency injection (DI) design pat-
tern [16]. This design pattern separates the behavior from the de-
pendency resolution and, thus, enables the implementation of the
proposed concepts ideally by a reduced coupling. As a result, the
configuration of the dependencies is done in separate modules. A
Graphical User Interface (GUI) enables the selection and configu-
ration of these modules and further enhances the swift development
and testing.

The proposed framework is applied to a complex optimization
task from the automotive domain. This Design Space Exploration
(DSE) of an automotive network comprises the allocation of re-
sources, binding of tasks, routing of messages, and the determi-
nation of a schedule. A separate optimization of these different
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Figure 1: The create() function creates a random genotype g in the search space G. For a genotype g, the decode function determines
a phenotype p in the solution space P. For a phenotype p, the evaluate function determines the objectives y in the objective space Y.

aspects might lead to suboptimal solutions. It is shown how the
entire optimization task is segregated into subtasks and a modular
development is carried out using the proposed framework. Thus,
several subtasks are designed separately such that multiple devel-
opers might work in parallel on subtasks or some subtasks might
be replaced in the development process later without affecting any
interdependencies.

Organization of the Paper. The remainder of the paper is outlined
as follows: Section 2 discusses related work. Section 3 presents
the concepts of the proposed framework. The reference implemen-
tation of the framework written in Java is outlined in Section 4.
Exemplary as a case study, a real-world automotive optimization
problem is implemented, using the proposed framework in Sec-
tion 5. Finally, the paper is concluded in Section 6.

2. RELATED WORK

In the recent years, several interfaces, libraries, and frameworks
for the development of meta-heuristic optimization algorithms and
optimization tasks have been proposed. PISA [9] provides an inter-
face concept to selection algorithms like the Strength Pareto Evo-
Iutionary Algorithm 2 (SPEA2) [31] or the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [12]. While interface concepts
like PISA [9] are very flexible in terms of the target platform or pro-
gramming language, each optimization algorithm or task has to be
developed from the scratch. As a remedy, libraries and frameworks
provide a set of predefined genotypes, operators, and algorithms
to simplify the development. These libraries and frameworks are
written in different programming languages such as Java [2, 4, 5,
7,10, 14, 22, 25, 26, 29], C/C++ [23, 13, 19, 17, 1], C# [30], or
Matlab [3].

Some of the referenced libraries and frameworks are restricted
to a single meta-heuristic approach, optimize only single-objective
problems, or have a restrictive or commercial license. Moreover,
the existing libraries and frameworks are not tailored to complex
optimization problems that require a concurrent optimization of
multiple aspects. As a remedy, the proposed framework is capable
of optimizing complex problems by providing compositional geno-
types and operators. Thus, the implementation does not require
boilerplate code as known frameworks and the development is sig-
nificantly improved in terms of code complexity and development
time. The provided reference implementation OPT4]J is free and
open source under LGPL [6]. Currently, the proposed framework
is used by numerous researchers from different domains for appli-
cations in FPGA design, software development, similarity search,
etc.

3. MODULAR FRAMEWORK

This section presents a modular framework for meta-heuristic
optimization. Besides a clear separation between the optimization

algorithm and optimization task, the goal is an eased development
of the optimization of complex problems.

In the following, a distinction of genetic representation and one
solution of the optimization is imposed. Thus, one individual con-
sists of a genotype, a phenotype, and the evaluated objectives. A
compositional concept is presented that allows the separate design
and development of subtasks of the optimization task. This con-
cept requires appropriate compositional operators that are capable
of handling composite genotypes.

3.1 Genotype-Phenotype Distinction

In the proposed framework, a separation of the genetic represen-
tation, the genotype, and one solution of the optimization problem,
the phenotype, is imposed. A decoder [21] is used to translate a
genotype into a phenotype. The separation allows to compose the
genotype from a set of predefined genotypes without reimplement-
ing these or appropriate operators for each optimization task, re-
spectively. Thus, only the problem-dependent phenotype as well as
the decoder have to be specified.

One individual ¢ is defined as 3-tuple consisting of the genotype
g, the phenotype p, and the objectives y. Commonly, the objectives
are defined in R™. However, the framework does not impose this
restriction to allow also other types of objectives, e.g., to consider
uncertainty [18]. The set of all genotypes is defined as search space
G. The set of all phenotypes is defined as solution space P. The
set of all objectives is defined as objective space Y . Here, function
create : ) — G generates a random genotype g € G, function
decode : G — P translates a genotype g € G into a phenotype
p € P, and function evaluate : P — Y determines the objectives
of a phenotype. An overview of this concept is illustrated in Fig. 1.

A distinction of genotype and phenotype enables the optimiza-
tion of complex problems where the genotype has to be processed
to become a feasible solution. This holds also for repair algorithms
that use a local search method to improve obtained solutions. A
further advantage of the separation of genotype and phenotype is
an improved maintainability and extensibility of the optimization
problem. In particular, the modification of the genetic represen-
tation becomes possible without affecting the evaluation function
evaluate.

3.2 Composite Genotypes

Many complex optimization tasks might be decomposed into
subtasks. In general, these subtasks cannot be optimized separately
due to their mutual correlation. To cope with such a high problem
complexity, a compositional approach is provided. Here, the geno-
type, the create, and the decode function can be composed in a
treelike structure. This significantly reduces the coupling and im-
proves the flexibility such that subtasks of the optimization prob-
lem can be developed and tested separately. In a final step, the
separately developed parts are merged seamlessly to the entire op-
timization task.
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Figure 2: Composite create function.
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Figure 3: Composite decode function.

A genotype might be a composite of multiple genotypes, i.e.,
g = (g1,...,9n). Thus, a compositional treelike structure is en-
abled. The search space for a composite genotype is defined as
G = G1 X ... X G The basic genotypes might be vectors of real
values, integers, binary values, permutations, or other data struc-
tures.

This also enables a compositional development of create and
decode functions, i.e., a create and decode function for each sub-
task of a complex optimization tasks. A compositional create
function is illustrated in Fig. 2 and given as follows:

create() = (createi(), ..., creates()) (1)

The returned genotypes of each subtask are put together to a com-
posite genotype.

A compositional decode function is illustrated in Fig. 3 and given
as follows:

decode(g) = merge(decoder (g1), ..., decoden (gn))  (2)

The genotypes are delegated to each correspondent decode func-
tion to determine the phenotypes. The merge function is problem-
specific and combines the sub-phenotypes p1, ..., pn appropriately
to p.

Here, each create and decode function for a subtask might be
developed separately. This improves the maintainability of com-
plex optimization tasks since each sub-genotype is fully isolated in
a branch of the composite genotype.

3.3 Composite Operators

In order to leverage the composite genotype, operators become
necessary that are capable of handling these composite genotypes.
In case g is not composite, a dispatcher applies the appropriate base
operator. The dispatcher function is applied to each leaf of the com-
posite genotype tree to determine the specific operator.

In the following, several standard operators for composite geno-
types are outlined:

size(g) = Z size(gi) 3)
i=1

mutate(g, p) = (mutate(gi,p), .., nutate(gn,p))  (4)

crossover(g, g) = (crossover(gi, i), .., crossover(gn, gn))

%)

neighbor(g) = (g1, .., neighbor(g:), .., gn) (6)
with probability p; = w
size(g)

algebra(g[], f) = (algebra(g(ls, f), .., algebra(g[ln, f)) (7)

copy(g) = (copy(g1), .., copy(gn)) ®)

n

diversity(g) = Z

i=1

diversity(g;) - size(g:)
size(g)

®

The size operator in Eq. (3) is required by many other opera-
tors. Here, the size of the genotype is determined by the sum of
the genotype sizes of the leafs. The mutate and crossover op-
erators in Eq. (4) and Eq. (5) are necessary for Evolutionary Al-
gorithms (EAs). Here, the mutate operator changes an existing
genotype with a mutation rate p. The crossover operator creates
a new genotype from two existing genotypes and might be gener-
alized to handle an arbitrary number of genotypes. The neighbor
operator in Eq. (6) is required by optimization algorithms such as
Simulated Annealing (SA) or Tabu Search (TS). Here, the operator
is applied to one child of the composite genotype with a probabil-
ity that is determined by the ratio of the size of the child to the
size of the composite genotype. The algebra operator in Eq. (7) is
used by optimization algorithms such as Particle Swarm Optimiza-
tion (PSO) or Differential Evolution (DE). Here, g[] indicates a list
of genotypes and f is a linear function that is applied to this list to
determine a new g. The copy and diversity operators in Eq. (8)
and Eq. (9), respectively, might be used for local search algorithms.

4. REFERENCE IMPLEMENTATION

The proposed concepts have been implemented in the reference
implementation OPT4J [6]. This reference implementation is writ-
ten in Java and open source licensed under LGPL. The goal of the
framework is to enable a development of optimization algorithms,
operators, and optimization tasks, avoiding boilerplate code. In the
following, the basic architecture of this framework and the module-
based configuration approach based on the dependency injection
(D) design pattern is presented.

4.1 Basic Architecture

The basic architecture is outlined in Fig. 4. An optimization task
is defined by implementing the interfaces Creator, Decoder, and
Evaluator. Thus, the create, decode, and evaluate functions are
defined implicitly.

An optimization algorithm is implemented by the interface Opti-
mizer. The Optimizer manipulates the Population and Archive. The
Population contains the Individuals of the current iteration, while the
Archive contains the non-dominated Individuals that were obtained
throughout the optimization process. One Individual contains the
Genotype, the Phenotype, and the Objectives. The Optimizer might
use any Operator to vary the Genotype and use the IndividualFactory
to build new Individuals. Note that instead using the Decoder and
Evaluator directly, an IndividualCompleter is used to determine the
Phenotype and Objectives of a set of Individuals. In most real-world
problems, the decoding and the objectives evaluation are the most
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Figure 4: Overview of the architecture of the reference implementation OrPT4J [6].




time-consuming tasks. In order to do this efficiently in a concur-
rent manner, the IndividualCompleterParallel is an implementation
of the IndividualCompleter and capable of performing this task in
parallel to leverage modern multi-core systems. Alternatively, this
task could be even carried on a cluster of multiple machines. Addi-
tionally, the Optimizer can use algorithm-specific operators such as
a Selector, e.g., NSGA-II or SPEA2, to perform the selection after
each iteration.

The composite genotype concept is implemented by the Com-
positeGenotype that can contain multiple genotypes. Here, a set of
several useful base genotypes is provided such as vectors of integer
values (IntegerGenotype), real values (DoubleGenotype), binary

values (BooleanGenotype), or permutations (PermutationGenotype).

Additionally, for each base genotype, a Map functionality is imple-
mented to simplify its usage by extending the index-based access
to a key-based access.

4.2 Module-based configuration

To achieve a high degree of flexibility and reduced coupling, the
implementation is using the dependency injection (DI) [16] frame-
work GUICE [28]. DI is a design pattern that is responsible for
wiring the elements of the software architecture together based on
their dependencies. Thus, for each interface of the architecture in
Fig. 4, an appropriate implementation has to be defined by a so-
called binding. For instance the EvolutionaryAlgorithmModule in-
ternally binds the Optimizer interface to the EvolutionaryAlgorithm
implementation. Correspondingly, the optimization task is config-
ured by binding the Creator, Decoder, and Evaluator to appropriate
implementations. Note that for each other interface there exists a
default implementation, for instance the Archive is by default im-
plemented by a CrowdingArchive with a maximal size of 100 using
the crowding distance [12].

Since the modules configure the binding of the implementations
to the interfaces, the current configuration is done by a selection
of modules. Additionally, the modules allow to set parameters.
To further improve the testing and configuration, the implemented
framework comprises a Graphical User Interface (GUI) for the se-
lection and configuration of these modules as illustrated in Fig. 5.
This GUI automatically lists all available modules and their meth-
ods such that no user code is necessary to obtain the visualization.
Moreover, each configuration might be saved in or loaded from
XML files, allowing also an execution of the optimization process
from the command line without the GUIL

5. CASE STUDY

In the following, an optimization task from the automotive do-
main is presented. The proposed framework is used to decompose
the complex problem into subtasks. It is shown how these subtasks
might be combined to achieve an effective optimization.

5.1 Problem Definition

The Design Space Exploration (DSE) of automotive networks
is a challenging optimization task. Commonly, the DSE is per-
formed in a graph-based manner using the widely accepted Y-chart
approach as illustrated in Fig. 6. Here, a specification consisting
of the application, architecture, and mappings is used to obtain an
implementation x (the phenotype) by performing four tasks: The
allocation of resources, the mapping of processes, the routing of
messages, and the scheduling.

The specification consists of an architecture graph Gr, an appli-
cation graph G, and the mapping edges Ear:

e The architecture is given by a directed graph Gr(R,ER).
The vertices R represent resources such as Electronic Con-
trol Units (ECUs), buses, and gateways. The directed edges
Er indicate available communication connections between
two resources.
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Figure 5: Configuration GUI for the modules of the reference
implementation.

e The application is given by a bipartite directed graph Gr (T, 1)
with T' = P U C. The vertices T are either processes p € P
or messages ¢ € C. Each edge e € £r connects a vertex in
P to one vertex in C, or vice versa. Each process might send
one or more messages. To allow multi-cast communication,
each message might have multiple successor process tasks.

e The set of mappings £y contains the mapping information
for the processes. Each mapping m = (p,r) € Enr indicates
a possible implementation of process p € P on resource r €

One implementation consists of the allocation graph G, and the
binding £3. Additionally, for each message ¢ € C' a sub-graph of
the allocation G . is determined that fulfills the data dependencies
such that the communication is established between each sender
process and the corresponding receiver processes. Moreover, prior-
ities for each message and process task have to be determined for
the event-triggered scheduling:

e The allocation is a directed graph G (e, &) that is an in-
duced sub-graph of the architecture graph Gg.
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Figure 6: Illustration of the Y-chart approach for a DSE of em-
bedded systems. The mapping of an application to an architec-
ture results in an implementation.

e The binding &3 is deduced from &ys. Each process p € P in
the application is bound to exactly one allocated resource.

e Each message in ¢ € C is routed on a tree G, that is a sub-
graph of the allocation G, . For each message, the following
two conditions have to be satisfied: (1) The root of the rout-
ing has to equal the target resource of the predecessor sender
process. (2) The message has to be routed on target resources
of the successive processes.

e The priorities are determined by a function prio: PUC —
N. In general, default priorities are given.

An implementation is termed feasible if it satisfies all data depen-
dencies of the application. Additionally, stringent real-time and
processor load constraints have to be satisfied. The objectives in
the work at hand are the average energy consumption in Ampere
(for 12 Volts) and the hardware costs in Euro.

5.2 Implementation

The presented DSE is implemented using the proposed optimiza-
tion framework. To this end, the design decision is made to sep-
arately develop the optimization problem for allocation, binding,
routing (task a) and scheduling (task b). For task a, two different
problem representations are developed separately.

Optimization Task al. First, an approach al based on a binary
encoding of the allocation and priority lists for the task mapping is
used. The genotype additionally has a priority list for the allocation
to allow a local repair approach to minimize the number of infea-
sible implementations. The routing is determined by shortest path
routing. The genotype of this approach is defined as follows:

ga1 € Gar = {0, 1}F x NF x NMr1 x5 NMen (10)

Here, M,, = {m|m = (pe,r) € M} is the set of mappings with
the source process pz.

Optimization Task a2. The second approach is using the SAT de-
coding [24] approach to avoid infeasible implementations. Here,
the problem is encoded into a set of linear constraints and binary
variables. In the following, a binary search problem is defined such
that a solution x € {0,1}" corresponds to a feasible implemen-
tation x. The symbolic encoding consists of the following binary
variables:

r binary variable for each resource » € R indicating whether
this resource is in the allocation « (1) or not (0)

m binary variable for each mapping m € E)s indicating whether
the mapping edge is in Eg (1) or not (0)

¢, binary variable for each message ¢ € C and the available
resources r € R indicating whether the message is routed on
the resource (1) or not (0)

cr,¢ binary variable for each message ¢ € C and resource r € R
indicating on which communicationstept € 7 = {1, .., |T|}
(message are propagated in steps or hops, respectively) it is
routed on the resource

The linear constraints are formulated as follows:
VpeP:
> m=1 an
m=(p,r)EE N

sz(p,T)GEM: F—m>0 (12)

Vee C,r € R,(¢,p) € Er,m = (p,7) € Em -

cr—m>0 (13)
Yee C:
¢ S ea=1 (14)
TER
Vee C,r € R,(p,c) € Er,m = (p,7) € Em :
m-—cy1 =0 (15)
Vee C,r € R:
e <l (16)
teT
YVee C,reR:
<Zcr,t> —c: >0 (17)
teT
VeeC,re R,iteT: e — o >0 (18)

Vee C,re Rt =12,.,|T|}:

g Ci,t

TER,e=(7,r)EER

Vee C,r € R:

— Cr,t+1 2 0 (19)

r—c. >0 (20)
VreR:

( > cr>+ > m|-r>0 @
m=(

cECATER p,r)EEM

The constraints in Equation (11) and (12) fulfill the binding of
each process to exactly one resource and the requirement that pro-
cesses are only bound to allocated resources, respectively. The re-
quirement that a message has to be routed on each target resource
of the successive process is fulfilled by the constraints in Equa-
tion (13). The constraints in Equation (14) and (15) imply that
each message has exactly one root that equals the target resource of
the predecessor mapping. The constraints in Equation (16) ensure



that a message can pass a resource at most once such that cycles
are prohibited. A message has to be existent in one communication
step on a resource in order to be correctly routed on this resource as
implied by the constraint in Equation (17) and (18). The constraints
in Equation (19) state that a message may be routed only between
adjacent resources in one communication step. In order ensure that
the routing of each message is a sub-graph of the allocation, each
message can be only routed on allocated resources as stated in the
constraints in Equation (20). Additionally, the constraints in Equa-
tion (21) ensure that a resource is only allocated if it is used by at
least one process or message such that suboptimal implementations
are removed effectively from the search space. This minimizes the
resulting allocation by redundant resources such that additional un-
necessary costs are prohibited.

A backtracking PB solver [15] implements the decode function
to obtain a feasible implementation by using the genotype as branch-
ing strategy, see [24]. Thus, the genotype defines a binary phase
and priority as real value for each variable and looks as follows:

a2 € Gaz = {0, 1}IR\+\M\+IR\'\C\ x RIFIHMIHIRIICT 99y
Given a single solution x of this linear search problem, the corre-
sponding implementation x is deduced. The allocation G, is de-
duced from the variables r and the binding £3 from the variables
m. For each message ¢ € C, the routing G is deduced from the
variables ¢, and ¢y .

Optimization Task b. For task b, the priorities of the tasks and
messages are determined separately using permutations. Thus, the
genotype is defined as follows:

€ Gy = NP x N° (23)

Concurrent Optimization. For each task al, a2, b, the appro-
priate create and decode functions have to be determined. The cre-
ate functions are defined implicitly by the required genotypes. The
decode functions for al and a2, respectively, return an implemen-
tation x € X = P. The decode function b returns a function prio
that determines the priorities of tasks and messages.

Since the evaluate function determines the objectives for an im-
plementation x, either al or a2 can be used as optimization prob-
lem since both decode directly to the solution space P. Here, the
priorities for the tasks and messages are predefined default values.
To further improve the optimization, either al or a2 can be com-
bined with b such that all four tasks allocation, binding, routing, and
scheduling are determined concurrently. By optimizing the prior-
ities, the end-to-end delays of the application are minimized such
that the search space is increased by additional feasible implemen-
tations. Fig. 7 and Fig. 8 show the composite create and decode
function, respectively. The merge method of the top-level decode
function assigns the priorities of prio to the corresponding tasks
and messages in the implementation .

Results. For the case study, a specification that models a auto-
motive sub-network is used. This specification consists of several
safety, comfort, and driver assistance applications that are mapped
to multiple ECUs, three buses, and one gateway. The architecture
consists of 35 resources, the application comprises 104 processes
and 61 messages, and the number of mappings is 192. This results
in a large search space, containing 227 solutions for allocation and
binding as subtasks alone.

Fig. 9 shows the results that are obtained for the case study using
an EA with 5000 objective function evaluations. Here, all four dif-
ferent possible combinations of al, a2, and b are presented. Note
that exchanging al by a2 as well as using b always improve the
optimization. Thus, a2 together with b delivers the best results.

Fig. 10 shows the GUI that is provided by the framework to mon-
itor and control (by pausing or stopping) the optimization process.
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Figure 7: The entire create function of the case study.
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Figure 8: The entire decode function of the case study.
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Figure 9: Results of the case study optimization task. Here, a1,
a2, and b are subtasks that are appropriately combined.
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Figure 10: The monitor for the optimization process of the framework showing the archive and the two-dimensional projection of
the archive and population of the current iteration. Additionally, each implementation from the archive can be viewed.

Additionally, for this case study, a visualization that displays an
implementation x was implemented.

6.

CONCLUSION

This paper presents a framework for the optimization of tasks
where multiple heterogeneous aspects have to be optimized con-
currently. A concept based on the separation of genotype and phe-
notype as well as a corresponding compositional approach are pre-
sented. Thus, the optimization task might be determined in a com-
positional manner. A corresponding open source reference frame-
work [6] is presented. Using the proposed concept and reference
framework, an optimization task from the automotive domain is
exemplary implemented. This complex optimization problem is
decomposed into subtasks that are optimized concurrently. This
enables a separate design, development, and testing as well as a
smooth iterative improvement of genetic representations and the
corresponding interpretation.
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